International Advanced Research Centre for Powder Metallurgy & New Materials (ARCI)

Balapur P.O., Hyderabad – 500005, Telangana, India

Large area carbon based perovskite solar cell

Overview

About 50% of the production costs of perovskite solar cells (PSCs) are accorded by the organic hole transporting materials (HTM) and the metal back contact. Using a highly conductive carbon electrode to replace both organic HTM and the metal back contact cuts down the production cost by 50%. Carbon-based materials, when used as back contacts in HTM-free PSCs, have been proved to be a class of cheap, stable, water-proof, and anticorrosive materials. By using screen printing technique large area with high uniformity and reproducible carbon based PSC can be made. As ongoing work, 100mm X 100mmcarbon based perovskite modules were developed.

Key Features

- Low material and production cost
 - Highly stable perovskite devices

Potential Applications

- Off-grid power supply
- Building integrated photovoltaics (roof, tiles)
- Solar road studs

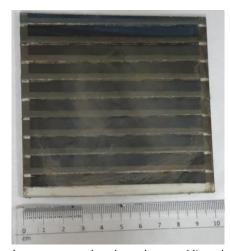


Figure: Large area carbon based perovskite solar cell

Major Patents/Publications

Room temperature curable carbon cathode for hole-conductor free perovskite solar cells, Solar Energy, Accepted

IPDI*	1	2	3	4	5	6	7	8	9	10
Activities	Basic concepts and understanding of underlying scientific principles	Short listing possible applications	Research to prove technical feasibility for targeted application	Coupon level testing in stimulated conditions	Check repeatability/ consistency at coupon level	Prototype testing in real-life conditions	Check repeatability/ consistency at prototype level	Reassessing feasibility (IP, competition technology, commercial)	Initiate technology transfer	Support in stabilizing production
Status										